

Nome: _____

Estatística II – Licenciatura em Gestão ER – 2 Julho 2013

_ Nº_____

Parte teórica

 Perguntas de Verdadeiro/Falso (1.5 valores) - Para cada afirmação, assinale se esta é Verdadeira (V) Uma resposta certa vale 0.3 e uma resposta errada penaliza em idêntico valor.) ou	Falsa
	٧	F
Num teste do χ^2 à bondade do ajustamento a região de rejeição pode ser bilateral		
Quando num teste de hipóteses com $\alpha = 0.03$ se obtém um valor-p de 0.047 rejeita-se H_0		
Seja X uma população com distribuição exponencial. A conjectura $P(X < 2) = 0.4$ pode ser testada recorrendo a um teste de hipóteses paramétricas.		
Na estimação do MRL $y_t = \beta_1 + \beta_2 x_{t2} + \beta_3 x_{t3} + u_t$, $t = 1, 2,, 105$, a verificar as hipóteses habituais obtevenadas.		
se $R^2=0.971$. Pode-se então garantir que se rejeita, para os níveis de significância habituais, H_0 no		
teste $H_0: \beta_2 = 0$ contra $H_1: \beta_2 \neq 0$.		
Quando uma população não é normal a média da amostra é um estimador enviesado da média da população, se esta existir		
 a. Considere um teste de independência χ² construído com base numa tabela de contingência. Assir alternativa correcta □ O número de elementos observados em cada célula tem de ser ≥ 5 □ A hipótese H₀ traduz a independência entre os 2 factores em análise □ Os graus de liberdade da qui-quadrado dependem de n, dimensão da amostra. □ A região de rejeição é bilateral 		
b. Seja o modelo de regressão linear $y_t = \beta_1 + \beta_2 x_{t2} + \beta_3 x_{t3} + u_t$ com $t = 1, 2,, n$. Quando se refere não sofre de autocorrelação está-se a dizer que, para $t, s = 1, 2,, n$, $ \Box \operatorname{cov}(x_{t2}, x_{s3} \mid X) = 0 $ $ \Box \operatorname{cov}(u_t, u_s \mid X) = \sigma^2 \text{ para } t \neq s \text{ e } \operatorname{cov}(u_t, u_s \mid X) = 0 \text{ para } t = s $ $ \Box \operatorname{cov}(u_t, u_s \mid X) = 0 \text{ para } t \neq s $ $ \Box \operatorname{Todas as a firmações anteriores são falsas } $	que	o mod
c. No modelo de regressão linear $y_t = \beta_1 + \beta_2 x_{t2} + \beta_3 x_{t3} + \beta_4 x_{t4} + \beta_5 x_{t5} + u_t$ com $t = 1, 2,, n$ prete $H_0: \beta_2 + \beta_3 = 0 \land \beta_4 = \beta_3$ contra $H_1: H_0$ falsa . Para tal recorre-se à regressão auxiliar dada por $ \Box y_t = \beta_1 + \beta_3 (-x_{t2} + x_{t3} + x_{t4}) + \beta_5 x_{t5} + u_t $ $ \Box y_t = \beta_1 + \beta_3 (x_{t2} + x_{t3} + x_{t4}) + \beta_5 x_{t5} + u_t $ $ \Box y_t = \beta_1 + \beta_3 x_{t3} + \beta_5 x_{t5} + u_t $ $ \Box y_t = \beta_1 + \beta_3 x_{t3} + \beta_5 x_{t5} + u_t $ $ \Box y_t - x_{t2} = \beta_1 + \beta_3 x_{t3} + \beta_5 x_{t5} + u_t $	nde-	-se te

3. Perguntas de desenvolvimento	(2.25 valores) -	 alínea a) 1 	valor: alínea b) 1.25 valores.	

Defina o conceito de amostra emparelhada e explique o seu interesse.

 $\text{Considere o MRL, } y_{t} = \beta_{1} + \beta_{2}x_{t} + u_{t} \text{, } t = 1, 2, \cdots, n \text{ , onde } u_{t} = v_{t} \sqrt{x_{t}} \text{ , com } E(v_{t}) = 0 \text{ , } \mathrm{var}(v_{t}) = \sigma^{2} \text{ e a variável } v = 0 \text{ .} v$ independente da variável x. Mostre que a hipótese H2, $E(u_t \mid X) = 0$, (exogeneidade condicionada) se encontra verificada e que a hipótese H4, $var(u_t | X) = \sigma^2$, (homocedasticidade condicionada) se encontra

violada.

1a. (15)

Estatística II – Licenciatura em Gestão

ER - 3 Julho 2013

T:

P:

Nº

Parte prática

	1
Espaço reservado para classificações	

4d. (15)

4e. (15)

1b. (10) 2b.(15) 4b. (10) 3.(15) 4c. (15)

2a. (15)

Em todos os testes de hipóteses que fizer, formule as hipóteses em teste, indique a estatística de teste e a sua distribuição. Para os intervalos de confiança proceda de forma semelhante para a variável fulcral.

4a. (15)

Se necessitar de espaço dispõe de uma folha em branco no fim do enunciado, antes do anexo. Pode arrancar a folha de anexo se lhe der mais jeito

- **1.** Seja X uma população com $E(X) = \frac{2}{1+\theta}$ e $Var(X) = \frac{2\theta(1-\theta)}{(1+\theta)^2}$, $\theta > 0$ da qual se recolheu uma amostra casual de dimensão n > 5.
 - a. Para estimar E(X) foi proposto o estimador $T = \frac{1}{8}(2X_1 + 5X_2 + kX_5 + 4X_n)$, sendo k uma constante desconhecida. Determine k de forma a garantir que T é estimador centrado para a média da população. Obtenha também a variância do estimador T como função de k e de θ .

2.	Susp Com uma	peita que no o arranj a amostra copo segu	a máquir jo da máq casual de e uma dis	na está a uina envol 16 cafés stribuição i	fornecer lve despes tendo obt normal.	menos quasas de alg $\sum_{i=1}^{16} x_i$	iantidade gum monta $c_i=60.0,$	de café dante a equ $s'^2 = 0.16$	lo que aqu ipa de man . Assuma c	ela que es utenção de jue a quan	e manutenção stava prevista. ecidiu recolher tidade de café ão e conclua.
	b.		a para a v								e intervalo de a associado ao

b. Estime $\boldsymbol{\theta}$ pelo método dos momentos.

3. Para melhor identificar o seu mercado alvo a Alfa Romeo conduziu um estudo de mercado. Uma amostra aleatória com 300 observações foi recolhida e cada pessoa seleccionada foi sujeita a um teste de condução findo o qual se classificou a sua atitude ao volante (Defensiva, Agressiva ou Equilibrada). Também se inquiriu, para cada pessoa, o seu modelo de Alfa Romeo preferido de entre 2 alternativas.

	Defensiva	Agressiva	Equilibrada	Total
Mito	60	10	30	100
Giulietta	60	60	80	200
Total	120	70	110	300

Teste (significância de 5%) se existe independência entre a atitude ao volante e o modelo de Alfa Romeo preferido.

4.		a analisar se o valor médio das rendas numa cidade é influenciado pela existência de uma un siderou-se o seguinte modelo:	niversidade
		$\log(\text{rendas}_t) = \beta_1 + \beta_2 \log(\text{pop}_t) + \beta_3 \log(\text{rendmedio}_t) + \beta_4 \text{ univ}_t + \beta_5 \text{ propalug}_t + \text{u}_t $ t	$=1,2,\cdots,n$
	po _l qu alu	de $log(rendas)$ é o logaritmo do valor médio das rendas (em euros) na cidade t , $log(pop)$ é o logaritmo da cidade t , $log(rendmedio)$ é o logaritmo do rendimento médio em euros, $univ$ vario assume o valor 1 se existe uma universidade na cidade e $propalug$ é a $proporção$ de $prop$	ável binária habitações
	a.	Interprete as estimativas obtidas para os coeficientes β_2 e β_4 . Recorrendo ao valor-p o que quanto à significância individual do regressor associado com β_2 (α = 0.10)?	e pode dizer

b. Interprete o valor obtido para o coeficiente de determinação e teste a significância global da regressão.

C.	Teste a 5% se é razoável admitir que um acréscimo de 5% no rendimento médio origine um aumento de 4% no valor médio das rendas de determinada cidade.
d.	Construa um intervalo de previsão a 90% para o valor médio das rendas numa cidade particular, a cidade A que é uma cidade universitária com 50500 habitantes. Considere ainda que, das habitações ocupadas, metade possui um contrato de aluguer e que o rendimento médio na cidade A é de 19 mil euros.
	meigue possui um contrato de giuspei e que o tendimento medio na cidade A e de 13 mil euros.
	metade possui um contrato de aluguer e que o rendimento medio na cidade A e de 19 mil edros.
	metade possul um contrato de aluguer e que o rendimento medio na cidade A e de 19 mil edros.
	metade possui um contrato de aluguer e que o rendimento medio na cidade A e de 19 mil edros.
	metade possui um contrato de aluguer e que o rendimento medio na cidade A e de 19 mil edros.
	metade possui um contrato de aluguer e que o rendimento medio na cidade A e de 19 mil edros.
	metade possui um contrato de aluguer e que o rendimento medio na cidade A e de 19 mil edios.
	metade possui um contrato de aluguer e que o renulmento medio na cidade A e de 19 mil euros.
	illetade possul um contrato de aluguer e que o rendimento medio na cidade A e de 19 min edios.
	inetade possul uni contrato de aluguer e que o rendimento medio na cidade A e de 19 mil editos.
	inietade possui din contrato de aluguer e que o rendimento medio ha cidade A e de 19 mil edios.
	inietade possui dili contrato de aluguel e que o rendiniento medio na cidade A e de 19 mil edios.
	intetade possul um contrato de aluguer e que o rendimento medio na cidade A e de 19 mil edios.

ANEXO

Modelo 1

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.9179					
R Square	0.8426					
Adjusted R Square	0.8375					
Standard Error	0.1341					
Observations	128					

ANOVA

	df	SS	MS	F
Regression	4	11.8456	2.9614	164.6359
Residual	123	2.21248	0.0180	
Total	127	14.0581		

		Standard				_
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-2.2166	0.4671	-4.7456	5.6664E-06	-3.1411	-1.2920
log(pop)	-0.0279	0.0203	-1.3746	0.1718	-0.0682	0.0123
log(rendmedio)	0.7996	0.0431	18.5523	1.8909E-37	0.7143	0.8849
univ	0.1492	0.0313	4.7601	5.3338E-06	0.0872	0.2112
propalug	0.0075	0.0014	5.5550	1.6345E-07	0.0049	0.0102

Modelo 2

SUMMARY OUTPUT

0.9179
0.8426
0.8375
0.1341
128

ANOVA

	df	SS	MS	F	Significance F
Regression	4	11.8457	2.9614	164.6359	2.1644E-48
Residual	123	2.2125	0.0180		
Total	127	14.0581			

		Standard		
	Coefficients	Error	t Stat	P-value
Intercept	5.885	0.0269	219.1421	2.560E-161
log(pop)-log(50500)	-0.0279	0.0203	-1.3746	0.1718
log(rendmedio)-log(19000)	0.7996	0.0431	18.5523	1.891E-37
univ-1	0.1492	0.0313	4.7601	5.3338E-06
propalug-0.5	0.0075	0.0014	5.5550	1.6345E-07